
Page 1

Windigipet 2025 – Journey-Planner and MQTT Integration
14-9-2025 – Jens Krogsgaard, Copenhagen - Denmark

Table of contents
1. Summary ... 1

2. Requirements specification .. 2

3. We set the scene .. 3

4. Changes to Windigipet project .. 4

5. Dataflow .. 7

6. Programming the Journey Planner ... 8

7. Application Journey Planner .. 11

7.1. Debug - Tab .. 12

7.2. Settings - Tab .. 13

7.3. Home – Tab .. 14

8. Program distribution – and installation .. 15

1. Summary

My big passion is model railways – especially running them with the latest version of Windigipet

2025 – and at the same time, I enjoy coding more or less complex systems.

These days, of course, AI has become the big buzzword everywhere. Being retired, I no longer have

colleagues to work with – so I thought I’d try teaming up with ChatGPT on a project. The idea is

that I describe the requirements and keep testing the code along the way – while ChatGPT acts as

my assistant, doing the coding and advising me on best practices in Python, a language I don’t have

that much experience with yet.

Page 2

2. Requirements specification
Before I get started together with ChatGPT, we first need to figure out what the program should actually
be able to do. It should be clear and easy to follow, but at the same time there should also be a bit of a
challenge so it doesn’t get boring.

How about creating an Arrivals and Departures board for each of the 4 stations on my model railway –
with trains, times, and everything running in real time, of course.

Here are the requirements:

• Create an Arrivals and Departures board for each station on a Windigipet-controlled model
railway.

• The number of stations should be configurable so others can also use the program.

• The program should be able to run on the same PC where Windigipet is running.

• There should be an installation kit so that anyone with WDP can install it easily.

• Data is sent from Windigipet to the application via MQTT, which is now supported in the latest
version of Windigipet.

• On the Arrivals board for each station, show:

o track number

o from-station

o arrival time

o train

o picture of train

• On the Departures board for each station, show:

o from-track

o to-station

o departure time

o train

o picture of the train

• There should be language support for Danish, English, and German.

• It should be possible to connect securely to the MQTT broker.

Page 3

3. We set the scene

I have a main station HBF with 6 tracks, and from here, trains arrive at and depart for two
staging yards, SKG1 (2 tracks) and SKG2 (4 tracks), as well as to Bergheim station BGH – 2
tracks.

In Windigipet, I have an automation – a “round trip” – that can control up to 9 train sets at the
same time. They run between my 4 stations, and it’s in this context that we’ll be creating our
timetable.

Page 4

4. Changes to Windigipet project

In Windigipet, we’ll make a small MultiPlan for
our timetable.
For departure times, we’ll use the PC time, and
for arrival times, we’ll just take the PC time and
add one minute. Of course, that’s not
completely accurate – but it works pretty well on
my layout.
And naturally, it can be adjusted as needed.

The times are calculated in the Dispatcher. First,
I split hours and minutes into separate counters
– and then I combine them into a text field. Now
they’re ready to be used.

combine Counters into a text field

For Hour - counter

And for minutes counter:

Page 5

We now need to send the following 7 pieces of
information to MQTT every time a train leaves
one of my 4 stations:

• FromStation
• FromTrack
• ToStation
• ToTrack
• Departure
• Arrive
• Train

The data should be combined into a text string
and passed into the field **** Data to MQTT
****.

• Example of a text string:
HBF;5;BGH;1;10:32;10:33;SVT137

In the Tour Automatic Editor, we have one line
for each combination of:

• FromStation
• FromTrack
• ToStation
• ToTrack.

That’s where we can put together the
information we want and send it to MQTT.

We do this with 2 actions:

• create the string
• send it to MQTT.

Page 6

We use the Extended Text Editor to collect the required information into a text string. The individual
elements are separated by “;”
The first part – FromStation, FromTrack, ToStation, ToTrack – comes directly from the row we’ve
selected, so we just type that in, e.g. HBF;5;BGH;1;.
The departure and arrival times we pull from our MultiPlan, while the train name comes from the
track plan.
We now have the finished text, and it’s created the moment this line in the automation is triggered. It
then needs to be sent straight to MQTT.

In an MQTT explorer, we can now see that data is being received from Windigipet. We always see the
latest message, and the next step is to create a program that reads these messages and stores them in
a table. So, we’re done making changes in Windigipet and can now start building the new program,
Journey-planner.

Page 7

5. Dataflow

Here you can see the data flow for our new system. I’m running my MQTT broker in the cloud – but it
could just as well be installed on a local PC. From Windigipet, messages are sent to the MQTT broker,
and these are then picked up by our new Windows app Journey Planner.

We also want to show pictures of the locomotives on our Arrivals and Departures boards. We can do
that by pulling the images from the file system – in the Vehicles and Lokbilder folders under the current
Windigipet project.

Page 8

6. Programming the Journey Planner
 How Rejseplanen was built – Jens & ChatGPT’s Adventure

Sketch 1 – The Big Idea

Every great project starts with an idea. Jens had the trains,
but he wanted a smart Windows app to plan departures
and arrivals.

Sketch 2 – The Unlikely Partnership

Jens set the requirements, ChatGPT wrote
the code. One explained the railway logic,
the other translated it into Python and PyQt.

Sketch 3 – MQTT Mayhem

We connected to MQTT – the trains started talking. Data
flew in, and our tables began to live.

Page 9

Sketch 4 – Debugging Adventures

There were… a few duplicates. But after some logic, we
found the right keys: FromStation + FromTrack (and later
ToStation + ToTrack).

Sketch 5 – The User Interface

The front page showed departures and arrivals, complete
with locomotive pictures pulled straight from the
Windigipet project.

Sketch 6 – Settings Chaos

The settings page became a control center: stations, MQTT
config, project folder, and even language selection with
cute flag buttons.

Page 10

Sketch 7 – The Happy Ending

After many iterations (and some late-night debugging),
the app was ready to run on the real railway. Packed as
an .exe, with flags, icons, and all.

 That’s the story of Rejseplanen:
One user with a clear vision + one AI with endless patience = one working app.

So how did the program actually get built?
Well, of course, I asked my buddy ChatGPT — and it came back with the points you just saw. And
honestly, that’s pretty accurate: I did the specifying and testing, while ChatGPT did the coding and kept
throwing in useful suggestions along the way.

I picked up a lot during the process — every now and then I even tweaked the code myself and fed the
changes back to ChatGPT.

Page 11

7. Application Journey Planner

Here’s the finished app.

It’s got three tabs, which we’ll walk through in detail below.

Page 12

7.1. Debug - Tab

This is the Debug tab.
It’s not something you’d normally use — it’s mainly there for testing the data transfer. The table shows
the data coming in from Windigipet.

Whenever a new row arrives, the program checks if any of the combinations FromStation + FromTrack
or ToStation + ToTrack already exist. If so, the old rows are deleted and the new one is inserted.

So this screen is super handy for testing the data flow — and at the same time, the table forms the
basis for generating the arrivals and departures boards on the front page.

Page 13

7.2. Settings - Tab

First, you create a list of stations from Windigipet.
The Short Name corresponds to the name that Windigipet actually sends out.

Next, you select the folder where your current Windigipet project is stored. After that, you set up the
connection to the same MQTT broker that Windigipet uses — and you can even test the connection to
make sure it works.

Finally, you pick a language. All labels and texts in the app will switch to the selected language. Once
everything looks good, you hit Save.

If you change the language, you’ll need to restart the app — just like in Windigipet.

Button Refresh locomotive images – this button isn’t normally used — it’s only there for debugging.

Page 14

7.3. Home – Tab

At the top of the screen you pick a station — after that, departures and arrivals for that station are
shown.

The data is sorted by track number, and the pictures are pulled from Windigipet for the current train.

Page 15

8. Program distribution – and installation

The program is distributed as a single .exe file. You just run it, and then a normal Windows installation
starts.

You can create a desktop shortcut if you like. Then just start the program, tweak the settings a bit, and
you’re up and running.

I’ve previously written a guide on how to connect Windigipet to an MQTT broker – you can check it out
here: MQTT - Windigipet guide

https://krogsgaardsmodelbane.dk/Projekter/07-WDP/Windigipet%202025%20-%20MQTT%20integration.pdf

